All-in-One Visualizer
The Visualizer class provides a convenient way to apply all visualization methods at once.
Usage
import imvf
# Create visualizer instance
visualizer = imvf.Visualizer()
# Visualize all features
visualizer.visualize("path/to/image.jpg")
What It Does
The Visualizer class:
- Loads the image from the specified path
- Applies all available visualizers: - Color Channel Visualization - Gradient Visualization (both color and grayscale) - HoG Features - LBP Features - Keypoint Detection (SIFT, AKAZE, ORB) - Power Spectrum
- Displays all results in OpenCV windows
- Saves all results to a directory named after the image
Output Directory
Results are saved to a directory structure:
path/to/image/
├── color_channels/
│ ├── blue.png
│ ├── green.png
│ └── red.png
├── gradients/
│ ├── gradient_x.png
│ ├── gradient_y.png
│ └── gradient_xy.png
├── hog/
│ └── hog.png
├── lbp/
│ └── lbp.png
├── keypoints/
│ ├── sift.png
│ ├── akaze.png
│ └── orb.png
└── power_spectrum/
└── power_spectrum.png
Advanced Usage
Using with Pre-loaded Images
import cv2
import imvf
# Load image
image = cv2.imread("path/to/image.jpg")
# Create visualizer
visualizer = imvf.Visualizer()
# Process the loaded image
# (Note: visualize() expects a path, use individual visualizers for pre-loaded images)
Accessing Individual Visualizers
The Visualizer class internally uses individual visualizers. For more control, use them directly:
import cv2
import imvf
image = cv2.imread("path/to/image.jpg")
# Use individual visualizers
color_viz = imvf.ColorChannelVisualizer()
hog_viz = imvf.HoGVisualizer()
color_result = color_viz(image)
hog_result = hog_viz(image)
See Also
- Individual Visualizers - Detailed guides for each visualizer
- API Reference - Complete API documentation