Gradient Visualization
Compute and visualize image gradients in X, Y, and combined XY directions.
Visualizers
ImgVisFeat provides two gradient visualizers:
ColorGradientVisualizer
For color (RGB) images.
import cv2
import imvf
# Load color image
image = cv2.imread("path/to/image.jpg")
# Create visualizer
visualizer = imvf.ColorGradientVisualizer()
# Apply visualization
result = visualizer(image)
# Display results
cv2.imshow("Gradient X", result.gradient_x)
cv2.imshow("Gradient Y", result.gradient_y)
cv2.imshow("Gradient XY", result.gradient_xy)
cv2.waitKey(0)
GrayGradientVisualizer
For grayscale images.
import cv2
import imvf
# Load and convert to grayscale
image = cv2.imread("path/to/image.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Create visualizer
visualizer = imvf.GrayGradientVisualizer()
# Apply visualization
result = visualizer(gray)
# Display results
cv2.imshow("Gradient X", result.gradient_x)
cv2.imshow("Gradient Y", result.gradient_y)
cv2.imshow("Gradient XY", result.gradient_xy)
cv2.waitKey(0)
Result Structure
The GradientResult dataclass contains:
gradient_x: Gradient in X direction (horizontal)gradient_y: Gradient in Y direction (vertical)gradient_xy: Combined gradient magnitude
Use Cases
- Edge detection
- Feature extraction for object recognition
- Image analysis and preprocessing
- Understanding directional changes in images
See Also
- API Reference - Complete API documentation
- GradientResult - Result type details