User Guide
This guide provides detailed information on using each visualizer in ImgVisFeat.
Available Visualizers
ImgVisFeat provides several specialized visualizers for different types of image analysis:
Feature Extraction
- Color Channels - Extract and visualize RGB color channels
- Gradients - Compute and visualize image gradients
- HoG Features - Histogram of Oriented Gradients for object detection
- LBP Features - Local Binary Patterns for texture analysis
- Keypoint Detection - Detect and visualize keypoints (SIFT, AKAZE, ORB)
- Power Spectrum - Frequency domain analysis
All-in-One
- Visualizer Class - Apply all visualizations at once
Common Usage Pattern
All individual visualizers follow the same usage pattern:
import cv2
import imvf
# Load image
image = cv2.imread("path/to/image.jpg")
# Create visualizer
visualizer = imvf.SomeVisualizer()
# Apply visualization
result = visualizer(image)
# Access results
# Results are dataclass instances with specific fields
Result Types
Each visualizer returns a typed result object containing the visualization results:
ColorChannelResult- Blue, Green, Red channelsGradientResult- Gradient X, Y, XYHogResult- HoG visualizationLBPResult- LBP visualizationKeypointResult- Keypoint and rich keypoint imagesPowerSpectrumResult- Power spectrum visualization
See the API Reference for complete details on each result type.