Skip to content

User Guide

This guide provides detailed information on using each visualizer in ImgVisFeat.

Available Visualizers

ImgVisFeat provides several specialized visualizers for different types of image analysis:

Feature Extraction

All-in-One

Common Usage Pattern

All individual visualizers follow the same usage pattern:

import cv2
import imvf

# Load image
image = cv2.imread("path/to/image.jpg")

# Create visualizer
visualizer = imvf.SomeVisualizer()

# Apply visualization
result = visualizer(image)

# Access results
# Results are dataclass instances with specific fields

Result Types

Each visualizer returns a typed result object containing the visualization results:

  • ColorChannelResult - Blue, Green, Red channels
  • GradientResult - Gradient X, Y, XY
  • HogResult - HoG visualization
  • LBPResult - LBP visualization
  • KeypointResult - Keypoint and rich keypoint images
  • PowerSpectrumResult - Power spectrum visualization

See the API Reference for complete details on each result type.